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Three-dimensional Ising model in the fixed-magnetization ensemble: A Monte Carlo study
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Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
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We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by
means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like
quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In
the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation
M (h). However, for finite systems, the relation is different. We establish a close connection between this
relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.

PACS number~s!: 05.50.1q, 64.60.Cn, 05.10.Ln, 75.40.Mg
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I. INTRODUCTION

Second order phase transitions display many interes
and subtle properties associated with scale invariance
universality at critical points. Some of these, such as pow
law singularities of the free energy and other quantities at
critical point, and their critical exponents and amplitud
have been studied rather thoroughly~see, e.g., Ref.@1#!.
Among less investigated items are the universal charact
tics of finite-size effects. These are important for analysis
experiments with finite samples, as well as for compu
simulations, which necessarily have to deal with finite-s
systems.

In clear distinction from, for example, critical indices, th
finite-size effects depend crucially on the nature of the s
tistical ensemble under consideration. To be concrete, le
consider one of the standard model systems of the ph
transition theory—the three-dimensional~3D! Ising model
on the simple cubic lattice, with nearest-neighbor inter
tions.

According to universality, this model describes the critic
properties of a wide range of systems of a different phys
nature, including second order phase transitions in unia
magnetic systems and the liquid-vapor critical point. The s
tistical ensemble most commonly used~usually denoted as
canonical ensemble! is defined by the partition function

Zc~h!5(
$si %

expH b(̂
i j &

sisj1h(
i

si J , si561, ~1!

where the sum includes all the 2N possible configurations o
a total number ofN spins. This ensemble is perfectly natur
for applications to magnetic phase transitions, wheresi
561 corresponds to physical spin at the lattice sitei point-
ing up or down, respectively. However, in the language
the lattice gas,si561 corresponds to an occupied or uno
cupied site, respectively: the total number of particles fl
tuates. The canonical partition sum Eq.~1! in the spin lan-
guage thus corresponds with the grand partition sum in
lattice gas language. To avoid confusion, we emphasize
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in the rest of this paper we are using the word ‘‘canonica
in the language of the Ising model: it means that the mag
tization is allowed to fluctuate freely.

In contrast, many real experiments and simulations
liquid-vapor systems are performed with a fixed number
particles. Fixing the number of lattice-gas particles is equi
lent, in the language of magnetic systems, to fixing the to
magnetizationM total[( i 51

N si of the system, or, in othe
words, fixing the average magnetization per spinM
[(1/N)M total5(1/N)( i 51

N si .
Thus we will be interested in the properties of the 3

Ising model in the fixed-magnetization ensemble

Zf~M !5 (
$si %:( i si5NM

expH b(̂
i j &

sisj J
5(

$si %
dNM,( i si

expH b(̂
i j &

sisj J . ~2!

Note that the magnetic fieldh is absent; it can only contrib
ute a constant factor.

One of the main difficulties encountered in compu
simulation studies of critical phenomena is the critic
slowing-down phenomenon. For a number of spin models
the canonical ensemble this problem has been largely o
come with the invention of cluster algorithms@2,3#. Until
recently, no similarly useful algorithm has become availa
for the fixed-magnetization ensemble. This situation has n
changed by the development of a geometric cluster algori
@4,5#. We have used this algorithm extensively in this wo
to efficiently simulate systems of fixed magnetization at
critical point.

In the canonical Ising model described by Eq.~1!, the
magnetic fieldh is an adjustable external parameter. In co
trast, the magnetization is a fluctuating observable. For e
configuration taken from the ensemble one can sample
magnetization per spinM5(1/N)( i 51

N si . Having accumu-
lated M over a sufficiently large set of configurations, on
77 ©2000 The American Physical Society
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FIG. 1. Top: Probability distributionsP(M ) of the magnetization per spinM5(1/N)( i 51
N si , at the critical point (b50.221654,

h50), for the 3D Ising model, Eq.~1!, in a cubic box with periodic boundary conditions, for two lattice sizes: 123 ~left! and 203 ~right!. The
Monte Carlo data were obtained using the Swendsen-Wang cluster algorithm~720 000 configurations for each lattice size!. The solid line is
a fit according to Eq.~19!. For the 123 lattice, a50.268(13),c50.859(8), M050.3892(11). For the 203 lattice, a50.209(9), c
50.839(11),M050.2984(9). Bottom: The difference between the data and the fit.
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can construct the probability distributionP(M ) @6–10#, and
determine various expectation values such as^M &, ^M2&.
Examples of such probability distributions at the critic
point are shown in Fig. 1.

On the other hand, for systems in the fixed-magnetiza
ensemble described by Eq.~2!, the roles ofh and M are
interchanged: nowM is the adjustable parameter, and it
intuitively clear that there should be some way to define
observable, which we denote byh̃ @to avoid confusion withh
in Eq. ~1!#, that will correspond to the magnetic field. Thush̃
will be a fluctuating quantity, that can be sampled on a m
croscopic level from configurations taken from the fixe
magnetization ensemble. In the limitN→` in both en-
sembles ~such that the correlation length vanishes
comparison with the system size!, the fluctuations inM andh̃

become negligible, and the difference betweenh and h̃ van-
ishes.

In Sec. II we discuss the definition ofh̃ and its properties.
In Sec. III we establish the relation between the funct
h̃(M ) in the fixed-M ensemble and the probability distribu
tion P(M ) in the canonical ensemble. We conclude with
discussion of the relation between the functionh̃(M ) in the
l

n

n

i-
-

n

fixed-M ensemble and the functionh(M ) in the canonical
ensemble, and with a summary of our main results.

II. THE MAGNETIC OBSERVABLE h̃„M … FOR THE
FIXED- M ENSEMBLE

We will now describe a definition ofh̃(M ) that is based
on statistical analysis of the local environment of a giv
spin. By local environment we mean the set of neighb
with which this spin interacts. In our particular case of t
Ising model with nearest-neighbor interactions on the sim
cubic lattice, the local environment consists of 6 spins on
neighboring sites. The local environment has 26 possible
configurations which divide in 7 types: 0162 ~zero spins
up, 6 down!, 1152, 2142, 3132, 4122, 5112,
6102 ~six spins up, zero down!. The simplest way to
Monte Carlo sampleh̃(M ) is on the basis of the symmetri
case 3132 @5#. For every Monte Carlo configuration, g
through all sites, and select all spins with the required
132 local environment. Then compute the average^s0& of
the selected spins, and defineh̃ by

^s0&5tanhh̃. ~3!
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It is also possible to employ, instead of 3132, any other of
the seven types of local environment. In these nonsymme
cases the definition reads

^s0&5tanhS h̃1b(
i 51

6

s0i D , ~4!

where thes0i are the nearest neighbors ofs0.
One easily notices that the definition is constructed

such a way thath̃ corresponds, on the mean field level, to t
external fieldh in Eq. ~1!. Now it is interesting to see wha
are the results of Monte Carlo simulations forh̃(M ). As has
already been demonstrated in Refs.@4,5#, at the critical tem-
peratureh̃(M ) practically coincides with the relationh(M )
in the canonical ensemble as obtained by Monte Carlo si
lations, providedM is sufficiently large, so that the correla
tion length is sufficiently small in comparison with the sy
tem size and the finite-size effects are suppressed. At
same time, the striking feature ofh̃(M ) for not-so-largeM is
its nonmonotonic behavior. Firsth̃(M ) goes negative a
small M, then it begins to grow, and finally assumes t
usual behavior at largerM @5#. This is clearly seen in Fig. 2
~diamonds!, which shows Monte Carlo results obtained
means of the the geometric cluster algorithm@4,5#.

In the remaining part of the paper, we will give the e
planation of this behavior~which turns out to be a peculia
kind of finite size effect!, by establishing a close relatio
betweenh̃(M ) in the fixed-M ensemble, and the probabilit
distributionP(M ) in the canonical ensemble.

III. CONNECTION BETWEEN h̃„M … IN THE FIXED- M
ENSEMBLE AND THE PROBABILITY DISTRIBUTION

OF M IN THE CANONICAL ENSEMBLE

Considering the fixed-M ensemble, Eq.~2!, one notices
that it can be obtained by taking the canonical ensemble~1!,
and cutting from it the subset satisfying the constraint,( isi
5NM. Within this subset we still have the usual Boltzma
probabilities exp$b(^ij &sisj% for individual configurations.

This makes it possible to establish a relation betwe
h̃(M ) in the fixed-M ensemble, and the properties of th
system in the canonical ensemble. The definition ofh̃(M )
described in Sec. II is equivalent to the following. Let us ta
the fixed-M ensemble and concentrate our attention on
particular lattice site, and on the spin located there. Let
perform the following measurement. For every configurat
consider the local environment of our selected site. If it is
3132, do not measure anything for this configuration. If
is 3132, measure the selected spins0 and store it. Finally,
find ^s0&, and use Eq.~3! to determineh̃.

One notices that, as long as we are performing a thou
experiment, we need not care about the Monte Carlo sta
tics. We can just stick to one site and get the same^s0&
without averaging over all sites, because they are equiva

Up to now we have distinguished between seven type
local environments, such as 3132. Let us go a bit further
and treat separately all 26 possible local environments. I
other words, the measurement of^s0& is now performed in
an even smaller subset of the fixed-M ensemble: also the si
ic
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spins forming the local environment ofs0 are fixed. In the
case that the predetermined local environment is of th
132 type, it may seem that there is no interaction betwe
s0 and the remaining system ofN27 spins. Nevertheless
the fixed-M ensemble probabilities thats0 is 11 or 21,
which we denote, respectively, byP1 andP2 , are not equal
in general. These probabilities may still depend on the m
netization of the remaining system, which is coupled tos0 by
the overall magnetization constraint

s01(
i 51

6

s0i1 (
i PRS

si5(
i 51

N

si[NM. ~5!

The total magnetization of the system is thus expressed
the sum of three terms: the local spins0, the sum of its six
neighbors and the magnetization of the remainingN27
spins denoted as( i PRSsi , whereRS stand for ‘‘remaining
system.’’

FIG. 2. Magnetic fieldh̃, computed as an observable in th
fixed-M ensemble Eq.~2!. The temperature, boundary condition
and lattice sizes are the same as in Fig. 1. Results obtained from
~3!, restricted to spins with a local environment of the ty
3132, are shown as diamonds. Triangles correspond to the
proved definition, Eq.~22!. Solid lines showdVeff(M )/dM, where
Veff(M ) is exactly the same as in Fig. 1. The dashed lines show
universal shape ofdVeff(M )/dM, using the universal~scaling-
limit ! values of the parametersa50.158(2), c50.776(2) @10#.
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The conditional probabilitiesP6 can be more explicitly
written as

P65P~s0561uNM,s01•••s06! . ~6!

The two conditional arguments specify the total magneti
tion NM and the states of the six neighbor spins. We n
make the connection with the canonical probabilitiesPc
which include the magnetization as an unconditional ar
ment. We use the zero-field canonical probabilities, i.e.h
50 in Eq. ~1!:

P65Pc
21~NMus01•••s06!Pc~s0561,NMus01•••s06!.

~7!

We may slightly rewrite this by substitution of the probab
ity Pc by P̂c which is equal but uses the magnetization of t
N27 remaining spins as its second argument:

P65Pc
21~NMus01•••s06!P̂cS s0561, (

i PRS
si5NM

2(
i 51

6

s0i2s0us01•••s06D . ~8!

Let us first consider the simplest case( i 51
6 s0i50. Thus the

canonical probabilityP̂c does not depend on its first argu
ment, which can thus be skipped:

P65
1

2
Pc

21~NMus01•••s06!P̂cS (
i PRS

si5NM

71us01•••s06D . ~9!

Therefore,

P1

P2
5

P̂cS (
i PRS

si5NM21us01•••s06D
P̂cS (

i PRS
si5NM11us01•••s06D . ~10!

The conditions01•••s06 in effect introduces a defect in th
remaining system: an octahedron-shaped bubble with
spins at its vertices fixed, while the spins0 in the middle is
decoupled and plays no role any more.

Obviously, the ratio~10! could be obtained by performin
a usual canonical ensemble simulation of such a system
a defect, and measuring the probability distribution for
overall magnetization( i PRSsi . The value of the ratio~10!
would then be given by the ratio of the heights of the tw
neighboring bins in the corresponding histogram.

In all cases of practical interest for the study of the scal
limit ~sufficiently large systems, sufficiently small magne
zation! the ratio~10! is close to 1. Otherwise a difference o
one unit in the total magnetization would lead to a lar
change of probability: this would obviously be far from th
scaling limit. Thus we always work withh̃!1.

It is convenient to introduce a shorter notationPRS(x)
[ P̂c(( i PRSsi5Nxus01•••s06) wherex may be read as the
-

-

ix

ith

g

magnetization of the remaining system if the factorN instead
of N27 makes a negligible difference, i.e., for large sy
tems. We have to keep in mind that the notationPRS refers to
a system with a defect whose type is not explicitly show
Again restricting ourselves to local environments of the ty
3132, we obtain

^s0&5
P12P2

P11P2
5

PRSS M2
1

ND2PRSS M1
1

ND
PRSS M2

1

ND1PRSS M1
1

ND . ~11!

Thus we arrive at

^s0&'2
1

N

1

PRS~M !

dPRS~M !

dM
. ~12!

Also, due toh̃!1, Eq. ~3! reduces to

^s0&5h̃, ~13!

and we get

h̃52
1

N

d

dM
log PRS~M !. ~14!

Defining the effective potentialVeff
(RS)(M ) ~i.e., the Ginzburg-

Landau fixed-M free energy! of the present system~with
defect! by

PRS~M !}exp$2NVeff
(RS)~M !%, ~15!

we get immediately

h̃5
dVeff

(RS)~M !

dM
. ~16!

For large systems, the relative contribution of the defec
small, and thush̃(M ) is well approximated byVeff(M ) for
the finite systemwithout a defect.

P~M !}exp$2NVeff~M !%, ~17!

h̃5
dVeff~M !

dM
1•••, ~18!

where the ellipsis stands for corrections vanishing at largeN.
As is well known, for finite 3D Ising models in a cubi

box with periodic boundary conditions, the distributio
P(M ) has a double-peak structure@6,7# at the critical point.
Thus Veff(M ) has a double-well shape, which immediate
explains whyh̃ goes negative for small values ofM. In Fig.
2 we show the quantitative comparison ofh̃(M ) ~depicted by
diamonds! anddVeff /dM ~solid line!. One observes that th
correspondence between the points and the line clearly
proves with increasing lattice size. To extractVeff from the
Monte Carlo-generatedP(M ) ~Fig. 1! we have exploited the
fact, reported in Ref.@10#, that for the system under consid
eration,P(M ) can be well approximated by the ansatz
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P~M !}expH 2S M2

M0
2 21D 2S a

M2

M0
2 1cD J , ~19!

which applies to the finite-size regime, i.e., the finite size
small compared to the bulk correlation length. We have fit
the Monte Carlo generatedP(M ) data accordingly, deter
mined the parametersa and c, and thus obtained
dVeff(M )/dM in a simple polynomial form.

It is also worth mentioning that the shape ofP(M ) for a
given geometry~in our case, a cubic box with periodi
boundaries! is universal at the critical point. That is, the p
rametersa and c have well-defined scaling limits when th
system size grows to infinity. These values,a50.158(2),
c50.776(2), have been determined in Ref.@10# by making
use of a special model in the 3D Ising universality cla
which has almost no corrections to scaling@11#. The corre-
sponding scaling form ofdVeff(M )/dM is plotted by the
dashed line in Fig. 2. One observes that deviations fr
scaling ~between the solid and the dashed lines! go down
with increasing size, as they should.

The results in Fig. 2 confirm the relation between t
observableh̃(M ) as defined above in the fixed-M ensemble,
and the probability distributionP(M ) in the canonical en-
semble. The remaining discrepancy~between the diamond
and the solid line in Fig. 2! is due to the ‘‘defect’’ discussed
above. The question arises whether it is possible to mo
our definition ofh̃ in order to suppress this discrepancy. W
have found that this is indeed the case. Up to this po
we restricted ourselves to symmetric local environme
(3132) to defineh̃ via Eq. ~3!. As has already been men
tioned, using Eq.~4! one may use other types of local env
ronments as well. In those cases the magnetizationk
[( i 51

6 si enters the definition

^s0&5tanh~ h̃1bk!. ~20!

Following the same arguments as before, we decompose
system in the local spins0, its fixed neighbors, and the re
maining system (RS). This leads to the following generali
zation of Eq.~11!:

^s0&5

ebkPRSS M2
k

N
2

1

ND2e2bkPRSS M2
k

N
1

1

ND
ebkPRSS M2

k

N
2

1

ND1e2bkPRSS M2
k

N
1

1

ND

'tanhbk2
1

cosh2 bk

1

N

1

PRSS M2
k

ND
dPRSS M2

k

ND
dM

'tanhS bk2
1

N

1

PRS~M !

dPRS~M !

dM D . ~21!

Thus we arrive once again at Eqs.~14!–~16!. But we now
have a different type of defect in the remaining system, a
a shift of k/N in the magnetization of the remaining syste
we neglect the latter effect. Now it seems plausible that
can suppress the influence of the defect by averaging ove
s
d

,

fy

t,
s

the

d
;
e
all

configurations of the defect, weighted with their natural o
currence probabilities. Such an averaging should more fa
fully reproduce the characteristics of a systemwithout a de-
fect. The modified determination ofh̃ is as follows. Sample
configurations from the fixed-M ensemble. For each spin de
termine its orientation (1 or 2) and the type of its local
environment~type 0, . . . ,6 for 0162, . . . ,6102). Accu-
mulate these data by incrementing one out of 14 b
Nq,1 ,Nq,2 , whereq50 . . . 6 denotes the type of local en
vironment, and1 or 2 denotes the local spin. The resultin
population numbers satisfy(q50

6 (Nq,11Nq,2)5N. Then,
for each q, find ^s0&q5(Nq,12Nq,2)/(Nq,11Nq,2) and
computeh̃q according to Eq.~4!. Finally,

h̃improved5
1

N (
q50

6

h̃q~Nq,11Nq,2!. ~22!

Applying this definition to our simulation data, we obser
that, within the statistical accuracy, the discrepancy betw
h̃(M ) anddVeff(M )/dM is indeed eliminated~Fig. 2!.

IV. DISCUSSION AND CONCLUSIONS

The relation~18! looks exactly the same as the standa
relation between the field and magnetization in the canon
ensemble:

h5
dṼeff~M !

dM
. ~23!

The observed differences between the properties ofh̃(M ) in
the fixed-M ensemble andh(M ) in the canonical ensemble
the most prominent of which is the nonmonotonic behav
of h̃(M ) instead of the monotonic behavior ofh(M ), can be
traced to the different definitions of the effective potenti
The one that occurs in Eq.~18! is the fixed-M free energy,

Veff~M !52~1/N!logZf~M !, ~24!

while the one that enters Eq.~23! is defined via a Legendre
transformation

Ṽeff~M !52~1/N!logZc~h!1hM, ~25!

where

M5^M &h ~26!

is the canonical average of the magnetization in an exte
field h. The partition functionsZf(M ) and Zc(h) were de-
fined in Sec. I. In a situation where fluctuations become n
ligible, the termhM in Ṽeff cancels the field dependence
the Boltzmann weights. Then both definitions of the effect
potential become equivalent, and both effective potent
approach the bulk form so that the difference betweenh and
h̃ vanishes.

In a finite system, due to fluctuations,Ṽeff differs from
Veff . For instance, at the Ising critical point, the double-w
form of Veff is absent:Ṽeff has a single-well form. Returning
to Eq. ~16!, there is another finite-size effect: the differen
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betweenVeff
(RS)(M ) and Veff(M ) due to the presence of th

defect. The relative contribution of the defect becomes sm
for large systems, and it is further suppressed by the
proved definition ofh̃, Eq. ~22!. Thus for large systems an
sufficiently highM, when the correlation length is small i
comparison with the system size, the finite size effects
suppressed, the difference betweenVeff(M ) and the bulk ef-
fective potential disappears, and our definition ofh̃(M ) re-
produces the expected bulk behavior.

In conclusion, we have studied the critical thre
dimensional Ising model in the fixed-magnetization e
semble, in a cubic geometry with periodic boundary con
tions. This was done by means of the recently develo
geometric cluster Monte Carlo algorithm. We have define
magnetic fieldlike observableh̃ for this ensemble, studied it
dependence on the magnetizationM and explained its coun
terintuitive nonmonotonic behavior:h̃ first becomes negative
and then positive with increasingM ~Fig. 2!. We have pro-
-

ll
-

re

-
-
i-
d
a

vided a quantitative description ofh̃(M ) by establishing a
close relation withP(M )—the probability distribution of the
magnetization in the canonical ensemble. The nonmonoto
behavior ofh̃(M ) can be understood as a manifestation
the same finite-size effect that is responsible for the dou
peak shape ofP(M ) at the critical point. Furthermore we
have shown that, when fluctuations are negligible, our d
nition reduces to the standard canonical relationM (h). Fi-
nally, we note that in the different context of the simulatio
of a system of particles whose number is fixed, a similar l
of reasoning enables the determination of the chemical
tential of the particles@12#.
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