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Three-dimensional Ising model in the fixed-magnetization ensemble: A Monte Carlo study
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We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by
means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like
quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In
the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation
M(h). However, for finite systems, the relation is different. We establish a close connection between this
relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.

PACS numbegps): 05.50+q, 64.60.Cn, 05.10.Ln, 75.40.Mg

I. INTRODUCTION in the rest of this paper we are using the word “canonical”
in the language of the Ising model: it means that the magne-
Second order phase transitions display many interestintization is allowed to fluctuate freely.
and subtle properties associated with scale invariance and In contrast, many real experiments and simulations of
universality at critical points. Some of these, such as powerliquid-vapor systems are performed with a fixed number of
law singularities of the free energy and other quantities at thgarticles. Fixing the number of lattice-gas particles is equiva-
critical point, and their critical exponents and amplitudes,lent, in the language of magnetic systems, to fixing the total
have been studied rather thoroughlkee, e.g., Ref[1]). magnetizationMtota|EEiN:13i of the system, or, in other
Among less investigated items are the universal characterisvords, fixing the average magnetization per sgif
tics of finite-size effects. These are important for analysis of= (1/N) M q,= (1/N) z:\‘= 1Si -
experiments with finite samples, as well as for computer Thus we will be interested in the properties of the 3D
simulations, which necessarily have to deal with finite-sizeising model in the fixed-magnetization ensemble
systems.
In clear distinction from, for example, critical indices, the
finite-size effects depend crucially on the nature of the sta-
tistical ensemble under consideration. To be concrete, let us Zf(M):{S_},EES::NM ex ﬁ% SiSjJ
consider one of the standard model systems of the phase s

transition theory—the three-dimension@D) Ising model B
on the simple cubic lattice, with nearest-neighbor interac- _gf} ONm,3;s; €X 'B% SiSj (- 2
tions. '

According to universality, this model describes the critical

properties of a wide range of systems of a different physicaNote that the magnetic field is absent; it can only contrib-

nature, including second order phase transitions in uniaxialte a constant factor.

magnetic systems and the liquid-vapor critical point. The sta- One of the main difficulties encountered in computer

tistical ensemble most commonly us@dsually denoted as simulation studies of critical phenomena is the critical-

canonical ensemblés defined by the partition function slowing-down phenomenon. For a number of spin models in
the canonical ensemble this problem has been largely over-

_ . _ . come with the invention of cluster algorithnig,3]. Until
Zo(h) {% exp{ B<i2,-> S'Sj+hzi S'}’ s=x1, (@) recently, no similarly useful algorithm has become available

for the fixed-magnetization ensemble. This situation has now

where the sum includes all thé' Dossible configurations of changed by the development of a geometric cluster algorithm

a total number oN spins. This ensemble is perfectly natural [4,5]. We have used this algorithm extensively in this work

for applications to magnetic phase transitions, where to efficiently simulate systems of fixed magnetization at the

=+ 1 corresponds to physical spin at the lattice sipwint-  critical point.

ing up or down, respectively. However, in the language of In the canonical Ising model described by Ed), the

the lattice gass;= + 1 corresponds to an occupied or unoc- magnetic fieldh is an adjustable external parameter. In con-

cupied site, respectively: the total number of particles fluctrast, the magnetization is a fluctuating observable. For each

tuates. The canonical partition sum Ed) in the spin lan-  configuration taken from the ensemble one can sample its

guage thus corresponds with the grand partition sum in thenagnetization per spiv =(1/N)EiN= 1Si - Having accumu-

lattice gas language. To avoid confusion, we emphasize thadated M over a sufficiently large set of configurations, one
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FIG. 1. Top: Probability distribution®(M) of the magnetization per spiM=(1/N)Ei'\‘:lsi, at the critical point =0.221654,
h=0), for the 3D Ising model, Eq1), in a cubic box with periodic boundary conditions, for two lattice sizes:(lgft) and 2§ (right). The
Monte Carlo data were obtained using the Swendsen-Wang cluster alg¢ri@@00 configurations for each lattice 9iz€he solid line is
a fit according to Eq.(19). For the 13 lattice, a=0.268(13),c=0.8598), M,=0.3892(11). For the Z0lattice, a=0.2099), ¢
=0.839(11),M;=0.29849). Bottom: The difference between the data and the fit.

can construct the probability distributid®(M) [6—10], and fixed-M ensemble and the functiom(M) in the canonical
determine various expectation values such(kly, (M?).  ensemble, and with a summary of our main results.
Examples of such probability distributions at the critical
point are shown in Fig. 1. Il. THE MAGNETIC OBSERVABLE h(M) FOR THE

On the other hand, for systems in the fixed-magnetization FIXED-M ENSEMBLE
ensemble described by EE), the roles ofh and M are
interchanged: nowM is the adjustable parameter, and it is  We will now describe a definition di(M) that is based
intuitively clear that there should be some way to define aron statistical analysis of the local environment of a given
observable, which we denote hyto avoid confusion witth ~ SPin. By local environment we mean the set of neighbors
in Eq. (1)], that will correspond to the magnetic field. THus With which this spin interacts. In our particular case of the
will be a fluctuating quantity, that can be sampled on a mi-'Sing mo‘?'e' with nearest-nelghbor Interactions on the simple
croscopic level from configurations taken from the ﬁxed-cup'C Iatt_lce, the local enwronmen? consists of 6 Spins on the
magnetization ensemble. In the limM—-c in both en- Neighboring sites. The local environment ha @ossible
sembles (such that the correlation length vanishes inconfigurations which divide in 7 types:406— (zero spins

comparison with the system siz¢he fluctuations itM andh up, 6 down, 1+5-,2+4-, 3+3~, 442, 5+1-,

o K ~ 6+0— (six spins up, zero down The simplest way to
it;iceosme negligible, and the difference betwéeandh van- Monte Carlo sampld?](M) is on the basis of the symmetric

) - ) ) case 3-3— [5]. For every Monte Carlo configuration, go
In Sec. Il we discuss the definition bfand its properties.  through all sites, and select all spins with the required 3

In Sec. Ill we establish the relation between the function 3_"|5cal environment. Then compute the averdgg of

h(M) in the fixedM ensemble and the probability distribu- the selected spins, and defineoy

tion P(M) in the canonical ensemble. We conclude with a

discussion of the relation between the functifM) in the (so)=tanhh. 3
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It is also possible to employ, instead of-3—, any other of
the seven types of local environment. In these nonsymmetri(%
cases the definition reads =

0.01 |

Magnetic field from fixed-M simulation, 128
0.008

6
<So>:tam‘(ﬁ+,821 SOi) , (4) 0.006 |

0.004
where thesy; are the nearest neighbors %f.
One easily notices that the definition is constructed in  g.002 |

such a way thalh corresponds, on the mean field level, to the
external fieldh in Eq. (1). Now it is interesting to see what 0 ¥

are the results of Monte Carlo simulations fM). As has
already been demonstrated in R¢#&5], at the critical tem-

peratureh(M) practically coincides with the relation(M) 0 0.1 0.2 03 0.4 0.5
in the canonical ensemble as obtained by Monte Carlo simu:
lations, providedM is sufficiently large, so that the correla-
tion length is sufficiently small in comparison with the sys-
tem size and the finite-size effects are suppressed. At tht;!_-i

same time, the striking feature b{M) for not-so-largeM is 0.003 |

its nonmonotonic behavior. Firdi(M) goes negative at
small M, then it begins to grow, and finally assumes the
usual behavior at largeM [5]. This is clearly seen in Fig. 2
(diamonds, which shows Monte Carlo results obtained by
means of the the geometric cluster algoritpdrb]. 0001 L
In the remaining part of the paper, we will give the ex-
planation of this behaviofwhich turns out to be a peculiar
kind of finite size effegt by establishing a close relation 0

betweerh(M) in the fixedM ensemble, and the probability | | = g A
distribution P(M) in the canonical ensemble.

-0.002

0.004 T T T T

Magnetic field from fixed-M simulation, 20°
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l1l. CONNECTION BETWEEN h(M) IN THE FIXED- M

ENSEMBLE AND THE PROBABILITY DISTRIBUTION ] FIG. 2. Magrlwetic fieldht,1 computed as an observable |n the
OF M IN THE CANONICAL ENSEMBLE ixed-M ensemble Eq(2). The temperature, boundary conditions,

and lattice sizes are the same as in Fig. 1. Results obtained from Eq.
Considering the fixedd4 ensemble, Eq(2), one notices (3), restricted to spins with a local environment of the type
that it can be obtained by taking the canonical enserfiple 3+3—, are shown as diamonds. Triangles correspond to the im-
and cutting from it the subset satisfying the constrat)s; ~ Proved definition, Eq(22). Solid lines showdVes(M)/dM, where
=NM. Within this subset we still have the usual Boltzmann Ver(M) is exactly the same as in Fig. 1. The dashed lines show the
probabilities expBZ.;ss;} for individual configurations. universal shape oflVe(M)/dM, using the universalscaling-
This makes it possible to establish a relation betweefMit) values of the parametees=0.15§2), ¢=0.776(2)[10].

h(M) in the fixedM ensemble, and the properties of the spins forming the local environment sf are fixed. In the

system in the canonical ensemble. The definitiorh(¥) 556 that the predetermined local environment is of the 3
described in Sec. Il is equivalent to the following. Let us take ; 5_ type, it may seem that there is no interaction between
the fixedM ensemble and concentrate our attention on oNg  and thé remaining system ®f—7 spins. Nevertheless

particular lattice site, and on the spin located there. Let U$no fixedM ensemble probabilities thay, is +1 or —1
perform the following measurement. For every configuratior\NhiCh we denote, respectively, By, andP_, are not equ’al
consider the local environment of our selected site. If it is not general. Thesé probabilities1 m;y still die,pend on the mag-

3+3—, do not measure anything fqr this config.urat_ion. If it hetization of the remaining system, which is coupledgty
is 3+3—, measure the selected sgnand store it. Finally, he overall magnetization constraint

find (so), and use Eq(3) to determineh.

One notices that, as long as we are performing a thought 6 N
experiment, we need not care about the Monte Carlo statis- Sot+ > Soit 2 Si=2, Si=NM. (5)
tics. We can just stick to one site and get the sasp i=1 ieRs =1
without averaging over all sites, because they are equivalent.

Up to now we have distinguished between seven types ofhe total magnetization of the system is thus expressed as
local environments, such ast3—. Let us go a bit further the sum of three terms: the local sgg the sum of its six
and treat separately all®2possible local environments. In neighbors and the magnetization of the remainMg 7
other words, the measurement (@) is now performed in  spins denoted a¥;_gss;, WwhereRS stand for “remaining
an even smaller subset of the fixbtl-ensemble: also the six system.”
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The conditional probabilitie®. can be more explicitly magnetization of the remaining system if the fadtbinstead
written as of N—7 makes a negligible difference, i.e., for large sys-
tems. We have to keep in mind that the notatityy refers to
P.=P(sp==*1|NM,Sp;- - - Spg) - (6)  a system with a defect whose type is not explicitly shown.

. . .__Again restricting ourselves to local environments of the type
The two conditional arguments specify the total magnetiza»_ o\ optain

tion NM and the states of the six neighbor spins. We now

make the connection with the canonical probabilities 1
which include the magnetization as an unconditional argu- P _p PRS( M— N) - PRS( M + N
ment. We use the zero-field canonical probabilities, he., (so)= A (11)
—0 i : TP +P_ 1 1\°
=0 in Eq.(1): +
P. =P (NM]sp;- - - Soe) Po(So=+ 1L NM]sgq- - - Sog).
(7)  Thus we arrive at
We may slightly rewrite this by substitution of the probabil- 1 1  dPgrdM)
ity P, by P, which is equal but uses the magnetization of the (Soy=~— N PedM) dM - (12
N—7 remaining spins as its second argument:
Also, due toh<1, Eq.(3) reduces to
Pt=Pgl(NM|sm-~-306)I50(so=i1,2 si=NM ~
1eRS (so)=h, (13
6
_21 Soi — SolSoz- - '306) . (8 and we get
~ 1d
Let us first consider the simplest caSf_;s,;=0. Thus the h=—3 am 09 Prs(M). (14
canonical probabilityﬁ’c does not depend on its first argu-
ment, which can thus be skipped: Defining the effective potentialgefs’(M) (i.e., the Ginzburg-
Landau fixedM free energy of the present systenwith
1 .
szzpc_l(NWSor“Soe)Pc( S s=NM defect by
ieRS
Prg(M)cexp —NVESI (M)}, (15)
+1Lsor- - 'SOG)' © e get immediately
Therefore, ~  dVES(m)
h= M (16)

P si=NM—1|sg;- - -S _ . .
P, °<i§zs ' [So1 06) For large systems, the relative contribution of the defect is

P_ . (10 small, and thu$i(M) is well approximated by(M) for
Pc( i;g si=NM+1[sq;- - - Sps the finite systenwithouta defect.
The conditionsy;- - - Sgg In effect introduces a defect in the P(M)ecexp{—NVer(M)}, (17)
remaining system: an octahedron-shaped bubble with six
spins at its vertices fixed, while the spgp in the middle is = dVer(M) ... (18)
decoupled and plays no role any more. dM '

Obviously, the ratiq10) could be obtained by performing
a usual canonical ensemble simulation of such a system witwhere the ellipsis stands for corrections vanishing at I&tge
a defect, and measuring the probability distribution for its As is well known, for finite 3D Ising models in a cubic
overall magnetizatior®; _gss;. The value of the ratig10) box with periodic boundary conditions, the distribution
would then be given by the ratio of the heights of the twoP(M) has a double-peak structui@,7] at the critical point.
neighboring bins in the corresponding histogram. Thus V(M) has a double-well shape, which immediately

In all cases of practical interest for the study of the scalingexplains whyh goes negative for small values bF. In Fig.
Iimi_t (sufficier_nly Iarge systems, sufficier)tly smgll magneti- 5 \ve show the quantitative comparisorfgM) (depicted by
zation the ratio(10) is close to 1. Otherwise a difference of diamonds anddV.

S L «/dM (solid line). One observes that the
one unit in the total magnetization would lead to a largeqqrespondence between the points and the line clearly im-
change of probability: this would obviously be far from the

~ proves with increasing lattice size. To extratl from the

scaling limit. Thus we always work with<1. Monte Carlo-generateB(M) (Fig. 1) we have exploited the
It is convenient to introduce a shorter notati®rgX)  fact, reported in Ref[10], that for the system under consid-

EIADC(EiERssi:Nx| So1- - - Spg) Wherex may be read as the eration,P(M) can be well approximated by the ansatz
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a—z‘l'C

M (19 currence probabilities. Such an averaging should more faith-
0

fully reproduce the characteristics of a systefithouta de-
which applies to the finite-size regime, i.e., the finite size isfect. The modified determination bf is as follows. Sample

small compared to the bulk correlation length. We have fittecconfigurations from the fixet4 ensemble. For each spin de-

the Monte Carlo generateB(M) data accordingly, deter- termine its orientation € or —) and the type of its local

mined the parametersa and c, and thus obtained environmenitypeQ...,6 for0+6—,...,6+0—). Accu-

dVex(M)/dM in a simple polynomial form. mulate these data by mcrementlng one out of 14 bins
It is also worth mentioning that the shape®fM) fora  Ng.+.Ng -, whereq=0 ... 6 denotes the type of local en-

g|ven geometry(|n our case, a cubic box with per|od|c vironment, and+ or — denotes the local Spin The resulting

boundariesis universal at the critical point. That is, the pa- Population numbers satisf;_ o(N +1tNg-)=N. Then,

rametersa and ¢ have well-defined scaling limits when the for eachq, find (Sp)q=(Ng +—Ng -)/(Ng++Ng ) and

system size grows to infinity. These valuess 0.1582), computeﬁ according to Eq(4). Finally,

c=0.7762), have been determined in R¢f.0] by making

use of a special model in the 3D Ising universality class, 12

which has almost no corrections to scalirig]. The corre- Pimproved= N Z g+ +Ng,-)- (22

sponding scaling form ofiV4(M)/dM is plotted by the

dashed line in Fig. 2. One observes that deviations fronnpplying this definition to our simulation data, we observe
scaling (between the solid and the dashed lings down  that, within the statistical accuracy, the discrepancy between

with increasing size, as they should.
The results in Fig. 2 confirm the relation between theh(M) anddVeg(M)/dM is indeed eliminatedrig. 2.

observablé(M) as defined above in the fixdd-ensemble,
and the probability distributiof?(M) in the canonical en-
semble. The remaining discrepan@yetween the diamonds The relation(18) looks exactly the same as the standard
and the solid line in Fig. Ris due to the “defect” discussed relation between the field and magnetization in the canonical
above. The question arises whether it is possible to modifgnsemble:

our definition ofh in order to suppress this discrepancy. We ~

have found that this is indeed the case. Up to this point, he dVer(M)
we restricted ourselves to symmetric local environments dMm
(3+3-) to defineh via Eq.(3). As has already been men-

tioned, using Eq(4) one may use other types of local envi- The observed differences between the propertids bf) in
ronments as well. In those cases the magnetization the fixedM ensemble anti(M) in the canonical ensemble,

M2 configurations of the defect, weighted with their natural oc-
P(M)OCGX —<W—1

IV. DISCUSSION AND CONCLUSIONS

(23

=35 s enters the definition the~ most prominent of which is the nhonmonotonic behavior
of h(M) instead of the monotonic behavior lofM), can be
<so>=tanr(ﬁ+ BK). (20) traced to the different definitions of the effective potential.

The one that occurs in E@L8) is the fixedM free energy,
Following the same arguments as before, we decompose the

system in the local spis,, its fixed neighbors, and the re- Ver(M) = —(1IN)logZ¢(M), (24)
maining system . This leads to the following generali-
zation gf éq (11)I.RS g9 while the one that enters E(R3) is defined via a Legendre
T transformation
sk 1 s 1 ~
e’*Prd M_N_N —e FPrd M — +N Vei(M)=—(1/N)logZ.(h)+hM, (25
(s0)= 1 ~ 1 where
eBPRS M_N_N +eBPRS M- —+—
M=(M)p (26)
1 1 1 dPrg M~ N) is the canonical average of the magnetization in an external
~tanhBk— 7 N field h. The partition function&Z;(M) and Z.(h) were de-
costt gk N RS( _ E) dM fined in Sec. . In a situation where fluctuations become neg-
N ligible, the termhM in V¢ cancels the field dependence of

the Boltzmann weights. Then both definitions of the effective
1 1 dPgrgM) . : . .

~tanH Bk— — (21) potential become equivalent, and both effective potentials
N PrgM) dM approach the bulk form so that the difference betweamd

Thus we arrive once again at Eq44)—(16). But we now h vanishes. -

have a different type of defect in the remaining system, and [n @ finite system, due to fluctuation¥, differs from

a shift of k/N in the magnetization of the remaining system; Veit- FOr instance, at the Ising critical point, the double-well
we neglect the latter effect. Now it seems plausible that onéorm of Vo is absentV 4 has a single-well form. Returning
can suppress the influence of the defect by averaging over &l Eq. (16), there is another finite-size effect: the difference
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betweenvfﬁfs)(M) and Veg(M) due to the presence of the vided a quantitative description &f(M) by establishing a
defect. The relative contribution of the defect becomes smaltlose relation withP(M)—the probability distribution of the
for large systems, and it is further suppressed by the immagnetization in the canonical ensemble. The nonmonotonic
proved definition ofh, Eq.(22). Thus for large systems and behavior ofh(M) can be understood as a manifestation of
sufficiently highM, when the correlation length is small in the same finite-size effect that is responsible for the double-
comparison with the system size, the finite size effects arpeak shape oP(M) at the critical point. Furthermore we
suppressed, the difference betwaég(M) and the bulk ef-  have shown that, when fluctuations are negligible, our defi-
fective potential disappears, and our definitionh¢M) re-  nition reduces to the standard canonical relafiéth). Fi-
produces the expected bulk behavior. nally, we note that in the different context of the simulation
In conclusion, we have studied the critical three-Of asystem of particles whose number is fixed, a similar line
dimensional Ising model in the fixed-magnetization en-Of reasoning enables the determination of the chemical po-
semble, in a cubic geometry with periodic boundary condi-tential of the particle$12].
tions. This was done by means of the recently developed
geometric cluster Monte Carlo algorithm. We have defined a
magnetic fieldlike observable for this ensemble, studied its
dependence on the magnetizatidnand explained its coun- We thank INTAS (Grant No. CT93-0028and DRSTP
terintuitive nonmonotonic behavio: first becomes negative (Dutch Research School for Theoretical Physitsr en-
and then positive with increasing (Fig. 2. We have pro- abling one of ugM.T.) to visit Delft University.
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